N90-25505

Mobile Transporter Path Planning
Paul Baffes and Lui Wang

Artificial Intelligence Section, FM72
Johnson Space Center, Houston, Texas 77058

1. ABSTRACT

(The work presented here is a copy of a
presentation given at the SPIE cambridge
symposium in November 1988). The use of
a genetic algorithm for solving the mobile
transporter path planning problem is
investigated. The mobile transporter is a
traveling robotic vehicle proposed for the
space station which must be able to reach
any point of the structure autonomously.
Elements of the genetic algorithm are
explored in both a theoretical and
experimental sense. Specifically, double
crossover, greedy crossover, and
tournament selection techniques are
examined. Additionally, the use of local
optimization techniques working in concert
with the GA are also explored. Recent
developments in genetic algorithm theory
are shown to be particularly effective in a
path planning problem domain, though
problem areas can be cited which require
more research.

2INTRODUCTION

The current design of the proposed space
station involves a rather large, skeletal truss
structure to which various living modules,
laboratories, and equipment will be attached
(see Figure 1). To facilitate the
performance of maintenance tasks and the
transportation of materials around the
station, a mobile transporter (MT) system is
being designed which will be capable of
traversing the truss structure. At the very
least, as the MT moves it must be able to
avoid collisions with the objects attached to
the truss, and it is obviously desirable that a
path of shortest distance be selected before
moving the MT between any two points.
Since the configuration of the space station
is modifiable and the MT must be able to
begin its trek from any point on the truss
structure, the selection of a good path for
the general case is a difficult task.

"Planning a path for the mobile
transporter falls into a category of

51

optimization problems known as trajectory
planning problems. Typically the solution
spaces for these problems are multimodal,
i.e., they are characterized by many local
maxima at which acceptable solutions may
be found. Classical gradient techniques for

‘solving such optimization problems have

not proven effective due to difficulties in
selecting relevant features from the domain
from which to build a hill climbing
algorithm. Several studies such as one
conducted by Gomez-Tierno! have
suggested that genetic algorithms (GA)
offer more promise due to the algorithm's
global approach to problem domains. These
studies also suggest that more theoretical
work on GAs needs to be done before the
technique can be satisfactorily applied to
trajectory planning. However, recent
advances in GA theory have directly
addressed problems, such as path planning,
whose solutions are order-dependent. What
follows is an examination of the application
of current GA theory to the mobile
transporter problem. The following specific
issues are addressed: (1) the details of
casting the mobile transporter problem into
a genetic algorithm format, (2) predictions
of pitfalls or enhancements which can be
derived from GA theory, and (3)
discussions of some issues still open for
using a GA to perform path planning for
the mobile transporter.

3. BACKGROUND
3.1 GENETIC ALGORITHMS

It is assumed that the reader is familiar
with the various elements of the genetic
algorithm and an introduction is not
provided here. However, a short review of
some of the theory and terminology of GAs
is presented as background material for the
sections which follow. Recall that the
recombination process of a GA typically
involves two operators: crossover and
mutation. A crossover occurs between two
solutions, called parents, which are
probabilistically selected from the

PRECEDING PAGE BLANK NOT FILMED

IVINAT

Figure 1. Empty space station truss structure

population based upon their fitness values.
A crossover point is chosen at random
between zero and the length of a solution
string, and the two parents are split at that
point into front and back ends. The back
ends of the two parents are then
interchanged and reconnected, creating two
new solutions which have roughly half of
their values from each parent. Mutation, on
the other hand, occurs within a single
parent and operates locus by locus. Should a
mutation occur at a particular locus point, a
new allele value for that point is randomly
chosen. The result is a new solution which
differs only slightly from the original.
While other genetic operators are
sometimes used, these two represent the
minimum necessary for the correct
operation of a GA and are the most widely
used.

Theoretical formulations of genetic
algorithms have been developed around the
concept of a schema which represents a
partition of the solution space. Roughly
speaking, a schema can be thought of as a
substring of a solution with some elements
given specific values and some left
undetermined. For example, given a binary

schema might look like the following:

*10***1**

where the "*" symbol indicates that either
allele value may occur at the given locus.
Consequently, the schema may be thought
of as representing groups or hyperplanes of
substrings which specify particular patterns

52

of allele-locus combinations. Schemata have
two important characteristics, their order
and their defining length. The order of a
schema is the number of its specified
elements; the above schema has an order of
3. The defining length is defined as the
distance between the outermost specified
elements of a schema. In the above
example, if we were to number the loci
shown we would have 9 loci with the two
"1" values occurring at positions 2 and 7.
Taking the difference of these yields a
defining length of 7 - 2 or 5. Note that this
is one less than what might normally be
considered the size of the schema,
sometimes called the length of the schema,
which here would be 6. In this paper the
defining length will be specified by 0
(delta) and the length will be specified by D
suchthat D=9 + 1.

Holland's2 work showed that, given the
proper problem domain, genetic algorithms
will evolve toward nearly optimal solutions
by building up complicated structures out
of small components which can be
described as schemata. A typical expression
of this ;)henomenon as described by

Goldberg> would look like the following:
n(Ht+l) 2
J(H
n @y 180 [1 p S, o)
L-1
ey

where H stands for a particular schema,
n(H,t) is a measure of the number of copies

of the schema in the population at time t, f
is the fitmess function, L is the length of a
solution, p, and p,, are the probabilities of
crossover and mutation, and d(H) and o(H)
are the defining length and order of the
schema. The fractional term indicates that
the number of schema in the population will
change proportional to the fitness of
solutions containing the schema relative to
the average fitness of the population. Of
particular interest is the last term of the
equation which is a measure of the extent to
which a crossover or mutation is likely to
disrupt the schema. Note that the greater
the defining length or order of the schema,
the greater the chances that it will be
altered by a crossover or mutation, thus
driving down the number of schema in the
population. Consequently, schemata which
are short and of low order are
probabilistically favored by the genetic
algorithm, and any GA which is to work
effectively must contain operators which
prefer such small, low order building
blocks.

Recent theoretical work by Goldberg and
Lingle4 is centered around the idea of a
double crossover technique termed a
partially matched crossover (PMX). The
PMX operator is particularly effective for
domains in which ordering of values is
essential. In such problems, both the allele
values and their positioning relative to
other alleles contribute to the overall fitness
of a solution. An example of an ordering
problem cited by Goldberg and Lingle is
the traveling salesman problem (TSP) in
which a salesman must visit some number
of cities in a circuit while taking the
minimum distance to do so. Crossing over
two solutions using the PMX operator
begins by selecting two crossover points,
instead of just one, which define a cut of
length K covering all alleles occurring
between the two crossover points. The cut
regions of the two solutions to be crossed
are then exchanged. Any duplications which
may result outside of the cut regions are
swapped between the two new solutions to
enforce the constraint of exactly one
occurrence of each city. Note that no
swapping is allowed to occur inside of
either cut, thus preserving whatever order
existed among the alleles within that region.
Goldberg and Lingle present the survival
chances of a schema using the PMX as

53

P(S) = K-Dg{)ﬂ
L-K-D(H)+1 K+1Jo(H)
L [1 T L] @

where K is the length of the cut, D(H) is the
length (not defining length) of the schema,
o(H) is the order of the schema, and L is
the length of a solution. The two terms of
this equation represent the two conditions
under which a schema may survive a
crossover: entirely within the cut region or
entirely outside of the cut region. Schemata
which span either of the two crossover
points are assumed to be disrupted. The
first term of the equation, for schema inside
the cut, is only dependent upon the length
of the schema. Again, short schema are
favored. The second term, for schema
outside of the cut, is dependent upon both
the length and the order of the schema. The
second factor of this term is a measure of
the chances that any single locus outside of
the cut will survive the swapping phase of
the PMX. Since this chance is the same for
all specified bits of the schema, the more
specified bits the schema has the lower its
chances of survival. Thus the lower order
schema are also favored by the PMX
operator.

To summarize, this review has presented
two formulas which show the probability of
schema survival. The first covers single
crossover cases and the second can be used
for the PMX crossover operator. The
analysis section which follows (section 4)
will discuss how these formulas relate to the
application of GAs to the mobile
transporter problem.

3.2 THE MOBILE TRANSPORTER

Several features unique to the mobile
transporter's design and operating
environment are salient to the use of genetic
algorithms as a modeling approach. As it is
currently envisioned, the MT will be able to
transport heavy loads (up to 300,000 Ibs.),
which will substantially hinder its rate of
travel. It is estimated that the travel time
between the two most remote points of the
station may be as much as 6 hours.
Furthermore, since the truss structure of
the space station is 3-dimensional, the MT
will have at least two types of movement:

along the surface of one plane, or between
two planes. The latter is a much more
complex maneuver lasting approximately
five times the duration needed to travel an
equivalent distance along a single plane.
Due to these constraints, path planning for
the MT must be efficient and adaptable so
that changes in the scheduled uses of the
MT may be quickly addressed by an
appropriate change of path.

However, trajectory planning for the MT
does not map directly into a genetic
algorithm format. One of the first obstacles
encountered is the need for a variability of
solution length which does not occur in a
classical GA design. The paths developed
for the MT vary in length not only between
problems as the MT is assigned different
starting and ending points, but also within a
single problem as the GA is running.
Furthermore, the existence of variable
length solutions complicates the structure of
the crossover operator, since some strings
will have more crossover opportunities than
others and since randomly chosen crossover
points will almost certainly produce invalid
solution paths. To ensure that a crossover
produces a valid result, one can use an
intersection crossover. An intersection
crossover is identical to the traditional
crossover except for a preceding step to
compute the set of intersecting points for
the two parents to be crossed. Once
calculated, this set is used as the basis for
the selection of a crossover point, thus
ensuring that the substrings of the two
parents used to make the new solution will
be rejoined at a common point. Note that
the use of the intersection crossover has two
potentially adverse effects: the selection of a
crossover point is no longer a uniformly
random choice (those points that are more
likely to be present in a path will be chosen
more often) and the probability of a
crossover occurrence is diminished because
some parent pairs may have an empty
intersection set. Finally, observe that double
crossovers performed using the set of
intersecting points can produce cycles in the
resulting solutions, even if the parent paths
of the initial population of solutions are
constrained to be free of cycles. Such loops
in the resulting solutions must be removed
if the constraint of no-cycle paths is to be
maintained in subsequent generations.

54

A delooping procedure which will
accomplish this can be defined as follows.
Starting with the beginning of the path, a
candidate point is chosen and all points
following the candidate are visited in turn.
If any of these following points matches the
candidate, all elements of the path between
the candidate and the matching point are
removed from the path. The checking then
continues with the same candidate until the
end of the path is reached, at which time the
point currently following the candidate is
chosen as the new candidate. The process is
repeated for all points until the end of the
path is reached. Note that no more than two
matches will be found for any given
delooping operation. This is due to the fact
that both the original path and the region
spliced in from the other parent are
guaranteed to have no cycles. As a
consequence, no two matches in the crossed
over solution will be identical and all such
matches will occur between a point inside
of the cut region and a point outside of the
cut region. Since delooping removes
everything between two matched points, a
single delooping action must cross one of
the two crossover points thereby removing
it from the solution. With only two
crossover points in a double crossover, only
two such delooping actions can occur.

Thus, several features of the mobile
transporter path planning problem make it
incompatible with classical GA techniques.
In particular, the existence of varying
length paths gives rise to a need for a
different mechanism for the crossover
operator. An intersection crossover is
defined to ensure that crossing over will
produce valid paths, but this in turn gives
rise to a cycling problem when two
crossover points are used. Consequently, a
delooping procedure has also been
developed to rid a path of cycles. The
resulting crossover operation becomes a
combination of intersection crossover
followed by the delooping procedure.
However, a question remains open as to the
possible adverse effects of these new
operators on the functioning of the
resulting GA.

4. APPROACH

A twofold approach was taken to
investigate the translation of the mobile

transporter problem into the format of a
genetic algorithm. First, an examination of
the current GA theory was made in an
effort to predict the behavior of the
resultant system. Second, several
simulations were written to collect
experimental data on the various GA
methods under question. The focus of these
two approaches was aimed at the following
topics:

1. Single vs double crossover. It was felt
that the MT path planning problem was
significantly order-dependent, but the
degree to which this was true was
unknown. It was questionable whether a
single crossover would be sufficient for
a problem which exhibited only a small
degree of dependence upon the order of
its values and, conversely, whether or
not a double crossover in such a
situation would be disruptive.

2. Effects of intersection crossover and
delooping, Given that a new crossover
operator was needed for performing
double crossovers, it was not
immediately clear what effect this
would have on the GA's performance.
The question arose as to whether the
new crossover operator might adversely
effect the diversity of the population
due to some points in the domain being
more likely candidates as crossover
points.

3. Use of a greedy crossover. Liebens et
al> describe a process whereby a greedy
algorithm technique was employed
during the selection of crossover points
which greatly enhanced the conversion
of the GA to an optimal answer. The
extent to which this idea would help in
the MT problem was an intriguing
question,

4, Need for a mutation operator. Because
the GA described here used a delooping
procedure rather than the swapping
procedure of the PMX, it was unclear
to what extent this might effect the
preference for low order schema.
Recall the presence of an order-
dependent factor in the second term of
equation (2). Since swapping was
replaced by delooping, this factor
would not present in the GA for the
mobile transporter, resulting in the loss

55

of the only order-dependent term of the
equation. If a mutation operator could
be devised which would return such a
factor to the equation, the question then
became whether to allow mutations to
occur within the cut region of the
double crossover or to force all
such.changes to occur outside the region
as is done with the PMX operator.

5. Local optimization. During our
simulations, we found that the GA
seemed to converge before the last few
"kinks" of a path could be straightened
out. Consequently, our analysis included
an examination of the extent to which
local optimization techniques could be

used to enhance the overall
performance of the GA.
6. Tournament selection. Normally,

parents are chosen for recom-bination
based on a roulette-like approach where
each parent occupies a percentage of an
imaginary roulette wheel proportional
to its fitness. Parents with the highest
fitness values are chosen most often.
However, this method of selection has
two disadvantages. If fitness values vary
widely, a super-fit parent can easily
dominate the population and drive the
GA to premature convergence. ON the
other hand, if fitness values are
clustered, small differences which may
be important are not emphasized
enough. Tournament selection provides
an alternative to roulette selection
which avoids both of these problems.

EXPERIMENTAL RESULT.

Much of what was expected was bome
out by the simulation results. Three
different simulations were developed to test
the issues cited in section 4 above: a
simulation of the mobile transporter, a
reproduction of the experiment performed
by Goldberg and Lingle for the TSP
problem, and a simple scheduling
simulation. The results for crossover
operators are presented first, then the tests
involving the mutation operator, and finally
the results of using local optimization and
tournament selection.

3.1 Crossover

Figure 2 shows a comparison
between typical single and double
crossover runs for the mobile
transporter genetic algorithm. The
crossover technique used for this
simulation was the intersection
crossover followed by the delooping
procedure described in section 3.2,
Note that the descending fitness
values of subsequent generations
indicate that the path length is
improving by getting shorter. As
expected, the MT problem exhibits
enough order-dependence to benefit
from the use of a double crossover,

Moreover, the double crossover proved
to have no adverse effect in the simple
scheduling problem. In this simulation, four
fictitious employees were to be scheduled
over a three week period with one
employee working per day. Each employee
was required to work between some
minimum and maximum number of days,
with some employees working less than
others. Also, no employee was allowed to
work two days in a row. The only ordering
constraint introduced into the problem was
a requirement that one particular employee
always work before another employee each
week, though no specification was made as
to how far apart the two employees had to
work. Fitness values were determined by
counting the number of constraints violated
by a solution, thus lower fitness values
represented better solutions (fewer
constraint violations). Table 1 shows the
average fitness of 96 runs using both single
crossover and double crossover GAs to
solve the problem. Note that each GA was

Best fitness

400
—a—— Double X-over

300 4 ——e— Single X-over

200 1

100 -

0 - T T T
0 - 10 20 30
Generation

Figure 2. Best fitness for single/double crossovers

allowed to run until it converged on a
single fitness value for all members of its
population. While Table 1 may not show
any significant advantage gained by using a
double crossover, it is clear that nothing
was lost by its use, as was expected.

Lastly, Figure 3 shows that the greedy
crossover method proved to be an excellent
choice. To implement a greedy crossover,
the double crossover operation was altered
to select from among a given set of
intersection points the two elements which
would create the shortest resulting possible
solution. The result produced only one
child for each parent pair, thus twice as
many crossover operations were performed
per generation. By adding a greedy method
to the crossover, the GA tended to find
equivalent path lengths 5 to 10 generations
earlier than was possible without the greedy
crossover. Even though the computation
needed to perform a crossover increased,
the overall execution of the GA was
lessened by lowering the number of
generations required to solve the problem.

Tablel. Crossover comparison for simple scheduling problem

Crossover used No. runs Average fitness
single crossover 96 14.2
double crossover 96 11.0

Table2. Mutation operators and the PMX crossover

Mutation used No. runs

Best fitness

Average fitness

no mutation 44
limited mutation 44
unlimited mutation 44

1266 1311.2
1240 1291.8
1224 1283.9

56

3.2 Mutation
The consequences of using the mutation
operator were more difficult to

characterize. Two different types of
simulations were run which tested
mutations with both constant and variable
length strings. The first simulation, built
using the PMX operator and the swapping
mutation described in the latter part of
section 3.1, was run on a traveling salesman
problem covering 40 cities. Three types of
runs were made: one with no mutation, one
with a limited mutation which was allowed
only outside of the cut region, and one with
an unlimited mutation which could occur
anywhere in the solution. All runs were
allowed to converge and a total of 44 runs
of each type were recorded. Table 2 shows
the results of these simulations. Though the
prediction of better performance using a
mutation that could effect the inside of a cut
region was shown to be true, its effects
were not as large as expected. This may
have been due, in part, to the fact that
relatively small population sizes were used
(30 to 50 members), but the extent to which
population size has an effect upon mutation
was not investigated. More statistical results
will have to be presented on such data. The
conclusion drawn here was that mutations
which could occur inside the cut region
certainly had no adverse effects upon the
order-dependence of the solution strings,
and may have enhanced the search for a
more optimal solution.

The second simulation, in which an
attempted was made to translate the benefits
of mutating inside the cut region to the MT
genetic algorithm, proved to be fruitless. A

400

——g— Double X-over
——e— GCreedy X-over

Generatdon
Figure 3. Double and greedy crossovers

57

swapping mutation operation such as the
one used with the PMX crossover could not
be used since the result would, in general,
produce an invalid path. In fact no single-
locus mutation operator could be devised.
The scheme finally adopted was to select a
cut region similar to the double crossover
cut by randomly picking two points of the
solution string. All elements between the
mutation points were removed and a new
random path was generated to bridge the
gap. The mutation probability also had to
be changed since it now referred to the
whole solution rather than each locus
individually. With each solution averaging
approximately 50 elements, this yielded
about a 5 percent (50 x 0.001 for each
locus) total chance that any given string
should mutate. Figure 4 shows that the use
of this mutation operator had no effect on
the performance of the mobile transporter
GA.

Part of the reason for this poor
performance may be explained by the fact
that the mutation operator chosen was not
dependent upon the order of a schema. By
choosing a region for mutation, rather than
some point-by-point operation, schema
which survive the mutation process will
most likely be short in length. But this is
exactly the situation already enforced by a
double crossover, thus no further
preferences result from the use of the
mutation operator. Consequently, as is
shown by Figure 4, nothing is gained by
adding the mutation operator. However, it
is important to note that this is only true for
the mutation operator defined here; it may
be possible to define other mutation
techniques which would have a beneficial

400
4 — m—— 0O mutation
——e—— 5% mutation
300 4
200
100 v T T
0 10 20 30
Genenation

Pigure 4. Mutation in the MT genstic algorithm

effect on the GA.
imi

Without an effective mutation operator
which could keep the diversity of the
population high, it became important to
look for a means of directing the GA
more quickly towards an optimal
solution. Both the local optimization
method we employed and the use of
tournament selection helped in this
regard. Local optimization was
implemented by taking advantage of the
inherent geometric regularities of the
Space Station truss structure. Referring
back to Figure 1, note that large sections
of the truss structure form contiguous
planes. These planes can be thought of as
single units or "blocks,” broken apart
only when some obstacle attached to the
truss structure divides the plane, or when
tone plane intersects another. Rather than
forming a path point by point, one can
work block by block, where a block
represents a contiguous length of unbroken
space along some plane of the truss
structure.

Figure 5 is a dramatic example of the
effects of using this local optimization
technique on the MT path planner problem.
Not only does the average fitness of the
population start out much better, but the
overall performance of the GA is twice as
good by the time the population converges
to a single answer. In some sense this is not
too surprizing since the optimization
technique used greatly reduces the search
space for the GA. However, it is clear that
such techniques can enhance the final output
of a GA when features of the problem

1 —&— Tournament
500 - —4— Roulette

0 10 20
Genseraton
Figure 6. Tournament svg. fitness

500 T3
i ~—g— non local
g 400 —— local
g 3001
=)
? 200 -
5 .
< 100
0 - T y '
0 10 20

Generation

Figure 5. Effects of local optimization

domain permit their use.

Finally, Figures 6 and 7 illustrate a
comparison of roulette and tournament
selection methods. Tournaments of 2 were
used for these experiments. As expected,
tournament selection slows the rate at which
a super-fit parent is allowed to proliferate
through the population. The result is a
higher diversity for a longer period of
time, as can be clearly seen in Figure 7.
Because no mutation operator could be
designed for the MT path planner, this
prolonged diversity became important to
the overall performance of the GA.
Without tournament selection, the GA
converged upon a solution too quickly,
missing better solutions latent in the
population.

6. SUMMARY

The genetic algorithm approach proved
to be an effective means for quickly solving

1.0 7
] —a— Tournament
0.8 - —+— Roulette
0.6
0.47
0.2 7
0.0 y 7 '
0 10 20

Generation
Pigure 7. Tournament diversity

the mobile transporter path planning
problem. Even though the MT problem did
not map directly into a GA format because
of the variable length of its solutions, a GA
was successfully applied which produced
optimal results within relatively few
iterations of the algorithm. This GA used a
greedy double crossover, tournament
selection, local optimization which grouped
contiguous points of the truss structure into
"blocks,” and a delooping procedure to
remove cycles from offspring. The greatest
improvement in performance came with the
addition of local optimization and greedy
crossover. Neither the presence of the
delooping procedure, nor the fact that some
points of the domain space were more
likely to be chosen as crossover points, had
any adverse effects upon the efficacy of the
algorithm. No mutation operator was used
since none could be devised to effect
solutions on a point-by-point basis. More
research still needs to be done on both the
mutation operator and the effects of using
an intersection set for the choice of
crossover points.

Ultimately, an operational solution to the
MT path planning problem may be
implemented using an exhaustive coding
technique due to the relatively small size of
its problem domain. However, since
trajectory planning is a common problem in
space systems which have much larger
domains, the genetic algorithm will remain
an attractive alternative to the classical
techniques used to solve such problems.

1 ACKNOWLEDGMENTS

The authors would like to thank Dr.
David Goldberg and Robert Smith of the
University of Alabama for their
explanations of genetic algorithm
techniques and their helpful discussions.

59

EFERE

1. M. A. Gomez-Tierno, Study on the use
h netic_algorith lution of

global optimization problems, Government
Report #GMV-204/85-V2/85, 151 pages
(1985).

2. J. H. Holland, Adaptation in Natural
and Artificial Systems, University of
Michigan Press, Ann Arbor (1975).

3. D. E. Goldberg, "Simple genetic
algorithms and the minimal, deceptive
problem,"” in neti lgorith
Simulated Annealing, Lawrence Davis, ed.,
Morgan Kaufmann Publishers, Inc., Los
Altos, 74 - 88 (1987).

4. D. E. Goldberg and R. Lingle,
"Alleles, loci, and the traveling salesman
problem," in Proc. Intl. Conf. on Genetic
Algorithms and their Applications, 154 -
159 (1985).

5. G. E. Liebens, M. R. Hilliard, M.
Palmer, and M. Morrow, "Greedy
genetics,” in Proc. Intl. Conf. on Genetic
Algorthims and their Applications, 90-99
(1987).

